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Abstract—We consider linear boundary value problems for operator equations with general-
ized-invertible operator in a Banach or Hilbert space. We obtain solvability conditions for
such problems and indicate the structure of their solutions. We construct a generalized Green
operator and analyze its properties and the relationship with a generalized inverse operator of the
linear boundary value problem. The suggested approach is illustrated in detail by an example.
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The classical theory of periodic problems for various classes of differential equations [1–3] arose
well before the development of methods of functional analysis. Its further development [4–8] used
functional analysis as a technique for studying general boundary value problems. For example,
on the basis of the theory of the generalized inversion of matrices [9], methods of the investiga-
tion of periodic boundary value problems were extended to general boundary value problems for
various classes of functional-differential equations: ordinary differential systems in critical (reso-
nance) cases [10]; differential systems with retarded argument [11]; ordinary impulsive differential
systems [12, 13]. General theorems on the solvability and the representation of solutions of critical
boundary value problems were proved for various classes of linear and nonlinear equations, and
spaces in which these boundary value problems were considered were generalized.

Further development was given by the theory of boundary value problems for ordinary differential
equations in a Banach space with the finite-dimensional Euclidean space of values of the unknown
function replaced by a more general Banach space [14]. For example, a criterion for the existence of
solutions of linear boundary value problems was obtained in [15] for ordinary differential equations
in a Banach space in the critical case. Conditions for the existence of periodic solutions of differential
and difference equations in the Banach space m of bounded numerical sequences were considered
in the monograph [16, p. 266]. Conditions for the existence and bifurcation of bounded, on the
entire real line R = (−∞, +∞), solutions of a weakly perturbed differential equation in a Banach
space were obtained in [17].

From the viewpoint of the theory of operators in function spaces, the above-listed boundary
value problems have the following specific features: the original equations in these boundary value
problems have solutions for an arbitrary right-hand side. In S.G. Krein’s terminology [18, p. 8], such
problems are everywhere solvable. However, there exist boundary value problems for which the
original operator equation is not everywhere solvable, for example, problems for integro-differential
equations [19] and problems for singular differential systems [20–22]. In this connection, it is topical
to study general boundary value problems for operator equations in a Banach space that are not
everywhere solvable, and this is what we deal with in the present paper.

STATEMENT OF THE PROBLEM

Let l∞(I,B1) be the Banach space of bounded vector functions z(t) defined on a finite interval
I and ranging in some Banach space B1, z(·) : I → B1 with norm |||z||| = supt∈I ‖z(t)‖B1 , let
l∞(I,B2) be the Banach space of bounded vector functions ϕ(t) defined on the same interval I and
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ranging in some Banach space B2 with norm |||ϕ||| = supt∈I ‖ϕ(t)‖B2 , and let B be the Banach
space of vectors with constant components. The notation of function spaces has been borrowed
from the monograph [23].

Let L : l∞(I,B1) → l∞(I,B2) be a linear bounded generalized-invertible operator, and let
` = col(l1, l2, l3, . . .) : l∞(I,B1) → B be a linear bounded vector functional. The generalized
invertibility of the operator L is defined as follows [24, p. 139] : the operator L is normally solvable,
and its null space N(L) and range R(L) are complemented subspaces of the Banach spaces l∞(I,B1)
and l∞(I,B2), respectively. In this case, there exist [25] bounded projections PN(L) : l∞(I,B1) →
N(L) and PYL

: l∞(I,B2) → YL, which decompose the spaces l∞(I,B1) and l∞(I,B2) into direct
sums of closed subspaces,

l∞(I,B1) = N(L)⊕XL, l∞(I,B2) = YL ⊕R(L).

Traditionally, generalized-invertible operators include the following operators: Fredholm oper-
ators of index zero (dimN(L) = dimYL < ∞) [26]; Fredholm operators (dimN(L) = n < ∞,
dimYL = d < ∞, and n 6= d) [27], where Fredholm theory was generalized to singular inte-
gral equations; n-normal operators [dimN(L) = n < ∞ and dimYL = ∞] with complemented
range; d-normal operators (dimN(L) = ∞ and dimYL = d < ∞) with complemented ker-
nel [18, pp. 27, 31]; topologically Fredholm operators of index zero [dimN(L) = ∞, dim YL = ∞,
and N(L) is isomorphic to YL] (reducible-invertible operators if the operator maps a Banach space
into itself [28, p. 24]); topologically Fredholm operators [dimN(L) = ∞ and dimYL = ∞] [29].

Note that Fredholm operators of index zero and Fredholm operators are distinguished in Russian
publications [11, 13, 18, 23] (where they are called Fredholm and Noether operators, respectively),
and both classes are referred to as Fredholm operators in English publications. In foreign publica-
tions, n- and d-normal operators are referred to as semi-Fredholm or semi-Noether operators among
which Φ+-operators [dimN(L) < ∞] and Φ−-operators (dimYL < ∞) are distinguished [30].

In the present paper, we obtain solvability conditions for general boundary value problems for
operator equations with generalized-invertible operators in abstract Banach spaces and analyze the
properties of the generalized Green operator for such boundary value problems.

BOUNDARY VALUE PROBLEM

Let us study necessary and sufficient solvability conditions and the structure of the set of solu-
tions z(t) ∈ l∞(I,B1) for the linear boundary value problem

(Lz)(t) = ϕ(t), (1)
`z(·) = α. (2)

The normally solvable equation (1) is solvable if and only if ϕ(t) ∈ l∞(I,B2) satisfies the
condition [18, p. 14; 24, p. 133]

(PYL
ϕ)(t) = 0, (3)

where PYL
: l∞(I,B2) → YL ⊂ l∞(I,B2) is the projection onto the subspace YL isomorphic to the

null space N(L∗) of the operator L∗ adjoint to the operator L.
Under condition (3), the general solution of Eq. (1) can be represented in the form

z(t) = (PN(L)ẑ)(t) + (L−ϕ)(t), (4)

where ẑ(t) is an arbitrary element of the space l∞(I,B1) and L− is a bounded generalized inverse
of L [11, p. 53; 13, p. 40; 31].

The solution (4) of the inhomogeneous operator equation (1) is a solution of the boundary value
problem (1), (2) if and only if the element ẑ(t) = ẑ0(t) ∈ l∞(I,B1) satisfies the operator equation

`(PN(L)ẑ0)(·) + `(L−ϕ)(·) = α,

which is obtained by the substitution of the solution (4) into the boundary condition (2).
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By L∗ = `PN(L)∗ we denote the linear operator mapping the Banach space l∞(I,B1) into
the Banach space B. The operator L is bounded, because it is the composition of the bounded
functional ` and the bounded projection PN(L).

Let the operator L belong to the class of generalized-invertible operators; i.e., the null space
N(L) and the range R(L) of the operator L are complemented in the Banach spaces l∞(I,B1)
and B, respectively.

By PN(L) : l∞(I,B1) → N(L) we denote the bounded projection of the Banach space l∞(I,B1)
onto the null space of the operator L, by PYL : B → YL we denote the bounded projection of the
Banach space B onto the subspace YL ⊂ B, and by L− we denote a linear bounded generalized-
inverse operator of the operator L.

From the operator equation
(Lẑ0)(·) = α− `(L−ϕ)(·) (5)

we find an element ẑ0(t) ∈ l∞(I,B1) for which a the solution (4) of Eq. (1) existing under condi-
tion (3) is a solution of the boundary value problem (1), (2). Since, by assumption, the operator
L is generalized-invertible and hence normally solvable, it follows that Eq. (5) is solvable if and
only if

PYL{α− `(L−ϕ)(·)} = 0. (6)

Under this condition, Eq. (5) has the family of solutions

ẑ0(t) = (PN(L)ẑ)(t) + (L−{α− `(L−ϕ)(·)})(t), (7)

where ẑ(t) is an arbitrary element of the Banach space l∞(I,B1).
By substituting ẑ0(t) (7) for ẑ(t) into (4), we obtain the general solution of the boundary value

problem (1), (2) in the form

z(t) = (PN(L){(PN(L)ẑ)(·) + L−[α− `(L−ϕ)(·)]})(t) + (L−ϕ)(t)
= (PN(L)PN(L)ẑ)(t) + (Gϕ)(t) + (PN(L)L−α)(t). (8)

Here PN(L)PN(L) is the resolving operator [14, p. 147] of the homogeneous boundary value problem
corresponding to (1), (2), and G : l∞(I,B2) → N(`) ⊂ l∞(I,B1) is the operator given by the
formula

(Gϕ)(t) = (L−ϕ)(t)− (PN(L)L−`(L−ϕ)(·))(t) (9)

and is called the generalized Green operator of the semihomogeneous (α = 0) boundary value
problem (1), (2).

We have thereby proved the following assertion.

Theorem 1. Let L : l∞(I,B1) → l∞(I,B2) and L : l∞(I,B1) → B be generalized-invertible
operators. Then the homogeneous boundary value problem corresponding to (1), (2) [ϕ(t) = 0,
α = 0] has the family of linearly independent solutions

z(t) = (PN(L)PN(L)ẑ)(t),

where ẑ(t) is an arbitrary element of the Banach space l∞(I,B1).
The inhomogeneous boundary value problem (1), (2) is solvable if and only if ϕ(t) ∈ l∞(I,B2)

and α ∈ B satisfy conditions (3) and (6) and in this case has a family of solutions of the form (8),

z(t) = (PN(L)PN(L)ẑ)(t) + (Gϕ)(t) + (PN(L)L−α)(t), (10)

where PN(L)PN(L) is the resolving operator of the homogeneous boundary value problem correspond-
ing to (1), (2) and G is the generalized Green operator (9).

Corollary 1. If the operators L and L are normally solvable and act in Hilbert spaces, then
in Theorem 1, one should replace the generalized-inverse operators L− and L− by the pseudo-
inverse operators L+ and L+ [13] and the projections PN(L), PYL

and PN(L), PYL by the orthogonal
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projections PN(L), PN(L∗) and PN(L), PN(L∗), respectively. In this case, formula (10) acquires the
form

z(t) = (PN(L)PN(L)ẑ)(t) + (Gϕ)(t) + (PN(L)L+α)(t),

where (Gϕ)(t) = (L+ϕ)(t)− (PN(L)L+`(L+ϕ)(·))(t) is the generalized Green operator.

Remark 1. When considering linear boundary value problems of the form (1), (2) for the
everywhere solvable differential operator Lz(t) = z′(t)−A(t)z(t) that acts from the Banach space
C1(I,B) of continuously differentiable functions ranging in the Banach space B into the Banach
space C(I,B) of continuous vector functions with supremum norm, we obtain the well-known
results in [15].

Remark 2. By considering periodic boundary value problems for linear difference equations in
the Banach space m, we obtain the earlier-known results obtained in [16] in the resonance-free case.

As a corollary of Theorem 1, consider the Cauchy problem

(Lz)(t) = ϕ(t), (11)
`z(·) ≡ z(t0) = z0, t0 ∈ I, (12)

which is a specific boundary value problem with L∗ = (PN(L)∗)(t0).

Corollary 2. Let L and L be generalized-invertible operators. Then the Cauchy problem (11),
(12) is solvable if and only if z0 = z(t0) ∈ B1 and ϕ(t) ∈ l∞(I,B2) satisfy the conditions

(PYL
ϕ)(t) = 0, PYL{z0 − (L−ϕ)(t0)} = 0

and in this case has the family of solutions

z(t) = (PN(L)PN(L)ẑ)(t) + (G0ϕ)(t) + (PN(L)L−z0)(t), (13)

where PN(L)PN(L) is the resolving operator of the homogeneous Cauchy problem [z0 = 0, ϕ(t) = 0]
corresponding to (11), (12), ẑ(t) is an arbitrary element of the Banach space l∞(I,B1), and
(G0ϕ)(t) = (L−ϕ)(t) − (PN(L)L−(L−ϕ)(t0))(t) is the Green operator of the semihomogeneous
(z0 = 0) Cauchy problem (11), (12).

Remark 3. If L is an everywhere solvable differential operator (Lz)(t) = z′(t)−A(t)z(t) acting
from the Banach space C1(I,B) of continuously differentiable functions ranging in a Banach space
B into the Banach space C(I,B) of continuous vector functions with the supremum norm and ϕ(t)
is a continuous vector function on the interval I, then PYL

≡ 0, the operator L∗ = (PN(L)∗)(t0) is
invertible for each t0 ∈ I, and the generalized-invertible operator L− is the integral right inverse
operator L−1

r . In this case, formula (13) acquires the form [14, p. 148]

z(t) = U(t, t0)z0 +

t∫

t0

U(t, τ)ϕ(τ) dτ, t0 ∈ I,

where U(t, τ) = U(t)U−1(τ) is the evolution operator.

GENERALIZED GREEN OPERATOR AND ITS PROPERTIES

By using the approach suggested in [32], we rewrite the boundary value problem (1), (2) in the
vector-matrix form

(Λz)(t) = f(t),

where Λ = col[L, `] is a linear operator and f(t) = col[ϕ(t), α] ∈ l∞(I,B2)×B.

(Reg. No. 305, 19.3.2014) DIFFERENTIAL EQUATIONS Vol. 50 No. 3 2014
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The operator Λ : l∞(I,B1) → l∞(I,B2)×B is bounded if the norm on the space l∞(I,B2)×B
is introduced as follows:

‖(ϕ, α)‖l∞(I,B2)×B = ‖ϕ‖l∞(I,B2) + ‖α‖B, ϕ ∈ l∞(I,B2), α ∈ B.

Consider some properties of the generalized Green operator (9) G : l∞(I,B2) → ker ` ⊂
l∞(I,B1) and its relationship with the operator Λ. To simplify the notation, throughout the
following we omit parentheses and variables.

Lemma 1. The generalized Green operator (9) satisfies the relation

ΛG =

[
Il∞(I,B2) − PYL

PYL`L−

]
. (14)

Proof. Indeed, by substituting the expression (9) for G into (14), we obtain

ΛG =

[
L

`

]
[L− − PN(L)L−`L−] =

[
L(L− − PN(L)L−`L−)

`(L− − PN(L)L−`L−)

]

=

[
LL− − LPN(L)L−`L−

`L− − `PN(L)L−`L−

]
=

[
LL−

(IB − LL−)`L−

]
=

[
Il∞(I,B2) −PYL

PYL`L−

]
,

because LPN(L) = 0, LL− = Il∞(I,B2) − PYL
, and IB − LL− = PYL [11, p. 53; 13, p. 40].

Remark 4. In the case of an everywhere solvable equation Lz = ϕ, relation (14) acquires the
form

ΛG =

[
Il∞(I,B2)

PYL`L−1
r

]
,

because R(L) = l∞(I,B2), PYL
≡ 0, and L− = L−1

r .

Theorem 2. Let L : l∞(I,B1) → l∞(I,B2) and L : l∞(I,B1) → B be generalized-invertible
operators. Then the operator

Λ− = [G,PN(L)L−] (15)

is a bounded generalized inverse operator of the bounded linear operator Λ = col[L, `].

Proof. As was shown above, if conditions (3) and (6) are satisfied, then the boundary value
problem

Λz =

[
L

`

]
z =

[
ϕ

α

]

is solvable and its solution has the form (10). Then for the generalized-inverse operator

Λ− : l∞(I,B2)×B → l∞(I,B1),

we have the representation

Λ−f =

[
L

`

]− [
ϕ

α

]
= Gϕ + PN(L)L−α.

Let us show that the operator Λ− has the following properties.
1. Λ−ΛΛ− = Λ−.
2. ΛΛ−Λ = Λ.

DIFFERENTIAL EQUATIONS Vol. 50 No. 3 2014 (Reg. No. 305, 19.3.2014)
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These properties define a generalized-inverse operator. As was mentioned in [24, p. 140], the second
property is a consequence of the first one. Therefore, to prove the theorem it suffices to show that
the operator Λ− satisfies the relation Λ−ΛΛ− = Λ−. Since LPN(L) ≡ 0 and `PN(L) = L, we have

ΛΛ− =

[
L

`

]
[G,PN(L)L−] =

[
LG LPN(L)L−
`G `PN(L)L−

]
=

[
Il∞(I,B2) −PYL

0

PYL`L− LL−

]
. (16)

It follows from the relations L−PYL
= 0, L−PYL = 0, and GPYL

= 0 that

Λ−ΛΛ− = [G,PN(L)L−]

[
Il∞(I,B2) −PYL

0

PYL`L− LL−

]

= [G(Il∞(I,B2) − PYL
) + PN(L)L−PYL`L−,PN(L)L−LL−]

= [G−GPYL
+ PN(L)L−PYL`L−,PN(L)L−] = [G,PN(L)L−].

The boundedness of the operator Λ− follows from the boundedness of the operators L−, G,
and PN(L)L−. Therefore, the operator Λ− : l∞(I,B2) ×B → l∞(I,B1) is a bounded generalized
inverse of the operator Λ of the original boundary value problem.

Theorem 3. The solvability conditions (3) and (6) for the boundary value problem (1), (2) are
equivalent to the condition

PYΛf = 0,

where PYΛ is the projection onto the null space N(Λ) of the operator Λ.

Proof. By using the formula [11, p. 53; 13, p. 40] ΛΛ− = Il∞(I,B2)×B−PYΛ , which relates the gen-
eralized inverse operator Λ− and the projection PYΛ , and relation (16), we find the projection PYΛ ,
which has the block structure

PYΛ = Il∞(I,B2)×B − ΛΛ− =

[
Il∞(I,B2) 0

0 IB

]
−

[
Il∞(I,B2) −PYL

0

PYL`L− LL−

]

=

[
PYL

0

−PYL`L− IB − LL−

]
=

[
PYL

0

−PYL`L− PYL

]
.

The operator PYΛ is indeed a projection, because it has the property P2
YΛ

= PYΛ ,

P2
YΛ

=

[
PYL

0

−PYL`L− PYL

][
PYL

0

−PYL`L− PYL

]

=

[
P2

YL
0

−PYL`L−PYL
− P2

YL`L− P2
YL

]
=

[
PYL

0

−PYL`L− PYL

]
= PYΛ .

Therefore, the condition PYΛf =

[
PYL

0

−PYL`L− PYL

][
ϕ

α

]
= 0 is equivalent to the solvability

conditions (3) and (6) for the boundary value problem (1), (2). The proof of the theorem is
complete.

Remark 5. If the operator equation (1) in the boundary value problem (1), (2) is everywhere
solvable, then the projection PYΛ has the form

PYΛ =

[
0 0

−PYL`L−1
r PYL

]
,

because PYL
≡ 0 and L− = L−1

r in this case.

(Reg. No. 305, 19.3.2014) DIFFERENTIAL EQUATIONS Vol. 50 No. 3 2014
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Example. Consider the operator equation

(Lz)(t) := z(t)−M(t)

1∫

0

N(s)z(s) ds = ϕ(t), (17)

where
M(t) = diag{et, et, . . . , et, et, . . .}, N(s) = diag{s, 0, s, 0, . . . , s, 0, . . .}.

Let the vector function ϕ(t) act from the interval [0, 1] into the Banach space c of all convergent
numerical sequences: ϕ(t) ∈ C([0, 1], c) := {ϕ(·) : [0, 1] → c}; let the operator functions M(t) and
N(t) act from the Banach space C([0, 1], c) into itself with the norms

|||M |||C([0,1],c) = sup
t∈[0,1]

‖M(t)‖c, |||N |||C([0,1],c) = sup
t∈[0,1]

‖N(t)‖c.

It follows from the definition of the operator functions M(t) and N(t) that

|||M |||C([0,1],c) = sup
t∈[0,1]
i,j∈N

|mij(t)| = sup
t∈[0,1]

|et| ≤ e, |||N |||C([0,1],c) = sup
t∈[0,1]

i,j∈N

|nij(t)| = sup
t∈[0,1]

|t| ≤ 1.

Then

‖L‖C([0,1],c) = sup
z∈C([0,1],c)

z 6=0

‖Lz‖C([0,1],c)

‖z‖C([0,1],c)

= sup
z∈C([0,1],c)

z 6=0

∥∥∥∥z(t) + M(t)
1∫
0

N(s)z(s) ds

∥∥∥∥
C([0,1],c)

‖z‖C([0,1],c)

≤ sup
z∈C([0,1],c)

z 6=0

‖z(t)‖C([0,1],c) + ‖M(t)‖C([0,1],c)

1∫
0

‖N(s)‖C([0,1],c)‖z(s)‖C([0,1],c) ds

‖z‖C([0,1],c)

≤ sup
z∈C([0,1],c)

z 6=0

(1 + e)‖z(t)‖C([0,1],c)

‖z‖C([0,1],c)

≤ 1 + e.

Therefore, the operator L is a linear bounded operator acting from the Banach space C([0, 1], c)
of continuous functions on the interval [0, 1] into itself.

Let us find solutions of Eq. (17) satisfying the conditions

`z(·) =

1∫

0

S(t)z(t) dt = α, (18)

where

S(t) = diag{S(2×4)(t), S(2×4)(t), . . .}, S(2×4)(t) =

(
e−t 0 e−t 0

(2t− 1)e−t 0 0 0

)
,

|||S|||C([0,1],c) = sup
t∈[0,1]

‖S(t)‖c.

The vector functional ` acts from the space C([0, 1], c) into the Banach space c and is bounded,
α ∈ c, α = col(α1, α2, α3, . . .).

DIFFERENTIAL EQUATIONS Vol. 50 No. 3 2014 (Reg. No. 305, 19.3.2014)
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For the operator L, the bounded projections PN(L) and PYL
and the operators PYL

and PN(L)

acquire the form

(PN(L)z)(t) = X(t)

1∫

0

Γ(s)z(s) ds, (PYL
y)(t) = Ψ

1∫

0

Φ(s)y(s) ds,

(PYL
z)(t) = Ψ

1∫

0

Γ(s)z(s) ds, (PN(L)y)(t) = X(t)

1∫

0

Φ(s)y(s) ds,

respectively, where

X(t) = diag{X(4×2)(t), X(4×2)(t), . . .}, Γ(t) = diag{Γ(2×4)(t), Γ(2×4)(t), . . .},

X(4×2)(t) =

(
et 0 0 0

0 0 et 0

)T

, Γ(2×4)(t) =

(
t 0 0 0

0 0 t 0

)
,

Φ(t) = diag{Φ(2×4)(t), Φ(2×4)(t), . . .}, Ψ(t) = diag{Ψ(4×2)(t), Ψ(4×2)(t), . . .},

Φ(2×4)(t) =

(
t 0 0 0

0 0 t 0

)
, Ψ(4×2)(t) =

(
2 0 0 0

0 0 2 0

)T

.

The boundedness of the projections PN(L) and PYL
implies the generalized invertibility and

hence the normal solvability of the operator L. Therefore, the original equation (17) is solvable if
and only if the vector function ϕ(t) satisfies the condition

(PYL
ϕ)(t) = Ψ

1∫

0

Φ(s)ϕ(s) ds = 0,

which is satisfied if and only if the components of the vector function ϕ(t) = col(ϕ1(t), ϕ2(t),
ϕ3(t), . . .) satisfy the relations

1∫

0

sϕ2k−1(s) ds = 0, k = 1, 2, 3, . . . (19)

Under condition (19), the operator equation (17) has the solution [11, p. 82; 13, p. 69; 31]

z(t) = (PN(L)ẑ)(t) + (L−ϕ)(t) = X(t)

1∫

0

Γ(s)ẑ(s) ds + ϕ(t) + M1(t)

1∫

0

N1(s)ϕ(s) ds, (20)

where ẑ(t) is an arbitrary element of the space C([0, 1], c) and

M1(t) = diag{M(2×4)(t),M(2×4)(t), . . .}, N1(s) = diag{N(4×2)(s), N(4×2)(s), . . .},

M(2×4)(t) =

(
2(et − 1) 0 −et −et

0 et 0 0

)
, N(4×2)(s) =

(
s 0 s s

0 0 0 0

)T

.

By substituting the general solution (20) into the boundary condition (18), we obtain the oper-
ator equation

Lẑ + `(L−ϕ)(·) = α, (21)
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where

(Lẑ)(·) = (`PN(L)ẑ)(·) =

1∫

0

S(t)X(t)

1∫

0

Γ(s)ẑ(s) ds dt = Q

1∫

0

Γ(s)ẑ(s) ds.

The linear bounded matrix operator

Q =

1∫

0

S(t)X(t) dt = diag

{(
1 1

0 0

)
,

(
1 1

0 0

)
, . . .

}

acts from the Banach space c of bounded sequences converging to a finite limit into itself (Q : c → c)
and is generalized-invertible.

By setting ẑ0 =
∫ 1

0
Γ(s)ẑ(s) ds, we rewrite the operator equation (21) in the form of the matrix

operator equation

Qẑ0 = α− `ϕ(·)− `M1(·)
1∫

0

N1(s)ϕ(s) ds. (22)

By constructing the projection PYQ
: c → YQ :

PYQ
= diag

{(
0 0

0 1

)
,

(
0 0

0 1

)
, . . .

}
,

we find that Eq. (22) is solvable if and only if

PYQ

{
α− `ϕ(·)− `M1(·)

1∫

0

N1(s)ϕ(s) ds

}
= 0.

After transformations, we find that the components of the vector α ∈ c and the vector function
ϕ(t) ∈ C([0, 1], c) should satisfy the conditions

α2k −
1∫

0

(2s− 1)e−sϕ4k−3(s) ds− 6− 2e

e

1∫

0

sϕ8k−7(s) ds = 0, k = 1, 2, 3, . . . (23)

Under these conditions, the operator equation (22) has the solution

ẑ0 = PN(Q)c + Q−
{

α− `ϕ(·)− `M1(·)
1∫

0

N1(s)ϕ(s) ds

}
, (24)

where c is an arbitrary element of the space c and

PN(Q) = diag

{(
1 0

−1 0

)
,

(
1 0

−1 0

)
, . . .

}
, Q− = diag

{(
0 0

1 0

)
,

(
0 0

1 0

)
, . . .

}
.

By substituting the expression (24) for ẑ0 for
∫ 1

0
Γ(s)ẑ(s) ds into (20), we obtain the general

solution of the boundary value problem (17), (18) in the form

z(t) = X(t)PN(Q)c + ϕ(t)−X(t)Q−`ϕ(·)

−X(t)Q−`M1(·)
1∫

0

N1(s)ϕ(s) ds + M1(t)

1∫

0

N1(s)ϕ(s) ds + X(t)Q−α.

DIFFERENTIAL EQUATIONS Vol. 50 No. 3 2014 (Reg. No. 305, 19.3.2014)
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Therefore, the boundary value problem (17), (18) is solvable if and only if conditions (19)
and (23) are satisfied, and, in this case, it has the family of solutions

z(t) = X(t)PN(Q)c + [ϕ(t)−X(t)Q−`ϕ(·)]

+ [M1(t)−X(t)Q−`M1(·)]
1∫

0

N1(s)ϕ(s) ds + X(t)Q−α.
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